DIAMOND RADIATOR DEVELOPMENT FOR THE GLUEX EXPERIMENT

Brendan Pratt University of Connecticut HUGS 2015

GlueX Detector

THIN AND FLAT DIAMONDS

Radiators restricted to $20\mu \text{m}$ thickness due to multiple scattering

Must also have well defined crystal structure with whole crystal rocking curves less than $30\mu r$

Techniques for thinning diamond exist, but they leave samples stressed and "potato chipped"

Laser ablation as a viable method for machining while keeping internal crystal structure unchanged

HUGS 2015

X-RAY ASSESSMENT: S150

X-RAY ASSESSMENT: S90

X-RAY ASSESSMENT: S30 - THE *Real* target

UCONN LASER ABLATION FACILITY

- CNC style XYZ translation and laser pulsing via LabView ۲
- Ablation Chamber optimized to reduce amorphous carbon deposition on windows •
- Enhanced optics to reduce spherical aberrations (sub micron beam spot) •

NEW IDEA TESTED IN 2012: ADD A FRAME

diamonds appear to warp severely when thinned to 20 microns

try to stiffen the diamond by leaving a thick outer frame around the 20 micron region

warping is from combination of mounting and internal stresses

frame around 20 micron is still part of the single crystal, maintains planarity

Jefferson Lab

10

LASER ABLATION

11

VAPOR PHASE ION ETCHING

IMPROVEMENTS

12

SIMULATION OF BACKGROUND GENERATION

initial design concept

UCONN

HUGS 2015

Enlarged section AA

ADDITIONAL CAPABILITIES

з

target surface

CHESS

16

UC30-14-C225

ACKNOWLEDGEMENTS

This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS) which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-1332208

