DIAMOND RADIATOR DEVELOPMENT FOR THE GLUEX EXPERIMENT

GlueX Detector

barrel calorimeter

THIN AND FLAT DIAMONDS

Radiators restricted to $20 \mu \mathrm{~m}$ thickness due to multiple scattering

Must also have well defined crystal structure with whole crystal rocking curves less than $30 \mu r$

Techniques for thinning diamond exist, but they leave samples stressed and "potato chipped"

Laser ablation as a viable method for machining while keeping internal crystal structure unchanged

X-RAY ASSESSMENT: S150

HUGS 2015

UCONN

Jefferson Lab

X-RAY ASSESSMENT: S90

X-RAY ASSESSMENT: S30 - THE REAL TARGET

UCONN LASER ABLATION FACILITY

- CNC style XYZ translation and laser pulsing via LabView
- Ablation Chamber optimized to reduce amorphous carbon deposition on windows
- Enhanced optics to reduce spherical aberrations (sub micron beam spot) Ablation Chamber

NEW IDEA TESTED IN 2012: ADD A FRAME

diamonds appear to warp severely when thinned to 20 microns

warping is from combination of mounting and internal stresses
try to stiffen the diamond by leaving a thick outer frame around the 20 micron region

frame around 20 micron is still part of the single crystal, maintains planarity

UCONNIIRST "PICTURE FRAME" SAMPLE: U40

 step size

Jefferson Lab

LASER ABLATION

HUGS 2015

VAPOR PHASE ION ETCHING

HUGS 2015

IMPROVEMENTS

UCONN

SIMULATION OF BACKGROUND GENERATION

initial design concept

UCONN

ADDITIONAL CAPABILITIES

target surface

target surface

HUGS 2015

UC30-14-C225

ACKNOWLEDGEMENTS

This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS) which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-1332208

